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A. INTRODUCTION

During this six-month period we completed construction of a mechanical

scanning device compatible with our dilution refrigerator and suitable for

use at very low temperatures. This device has now been thoroughly tested

and was used to record our first acoustic images in liquid helium at tempera-

tures below O.10 K. This report describes the design of the mechanical

scanner and presents the first micrographs taken in this new regime of

imaging. We also present theoretical results which account for much of
I

the nonlinear imaging behavior described in the previous status report.

In particular we investigate the theory of resolution improvement when high

acoustic intensities are used, and quantitatively account for the onset of

nonlinear excess attenuation.

B. LOW TEMPERATURE MECHANICAL SCANNER AND IMAGING RESULTS

In order to take advantage of the very low acoustic attenuation found

in low temperature liquid helium, we have previously installed a dilution

refrigerator capable of reaching temperatures down to about O.0150K (15 iK).

In the last six months we have constructed a mechanical scanner compatible

with the dilution refrigerator and have produced the first microscopic

images in very low temperature helium (< 100 mK). A schematic diagram of

the scanner is shown in Figure 1. The scanner is bolted to the bottom of

the dilution refrigerator mixing chamber. The sample is lowered through

an experimental access tube which has been described previously. 2 The

scanner moves the acoustic lens electromechanically in two dimensions by

means of two drive coils oriented perpendicular to each other, and the
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motion is sensed by two additional coils. Only two of the four coils

are shown in Figure 1. The lens is situated on a flexible post that is

attached at the bottom of the scanner. A unique feature of this scanner

is that the stainless steel semi-rigid coaxial line which transmits the

microwave signals to and from the acoustic lens also acts as the flexible

post (Uniform Tubes UT-141SS).

In operation, helium is condensed into the scanner and the whole

apparatus is then cooled below 100 mK. To contain superfluid helium

a leaktight design is required. This is achieved through the use of

indium O-ring seals and a carefully constructed epoxy feedthrough for

the coaxial line. One must also attempt to minimize the heat capacity of

this large experimental package to allow cooling in a reasonable amount of

time. Of particular concern is the very large specific heat of helium

at low temperatures. For this reason we have reduced the helium volume

of the scanner to less than 25 cm3 by filling unoccupied space with nylon

forms (not shown in Figure 1).

The performance of the scanner as evaluated in the first microscopic

imaging experiment is impressive. After condensation of helium into the

scanner, just 2-1/2 hours are required to cool to less than 50 mK. The

accuracy of the raster scan was judged to be better than 1000 A. Focusing

of the sample was performed by a micrometer attached to the room tempera-

ture end of the sample holding rod and I micron positioning accuracy was

observed. Some improvement of the focusing mechanism will be necessary

in the future since the depth of focus will decrease when shorter acoustic

wavelengths are used.

-3-



The lens used in the initial imaging experiment was described in a

previous report. 3  It has a radius of curvature of 80 m and an opening

angle of approximately 150 (f/1.9 aperture). A quarter wavelength layer

of amorphous carbon serves as the acoustic impedance matching trans-

former. The frequency of operation is 980 MHz with a corresponding

wavelength in the liquid of 2400 A. This is the shortest wavelength

yet used for acoustic microscopy. The total insertion loss, including

two-way transducer conversion loss, lens illumination loss and acoustic

impedance mismatch loss, is approximately 53 dB. Despite this relatively

low loss (room temperature microscopes typically operate with more than

90 dB of insertion loss), the signal-to-noise ratio of our imaging was

less than 10 dB. The low signal-to-noise ratio is due to the large
Al

nonlinear attenuation which is encountered in the liquid path for rf

input power greater than approximately -30 dBm (1 microwatt). Various

methods of improving the signal-to-noise ratio are under consideration.

Two of the acoustic micrographs recorded between 50 and 80 mK are

shown in Figure 2. The sample is a 4 um period grating consisting of

2 um wide aluminum lines on a glass substrate. The grating is seen only

faintly in Figure 2(a) because the aluminum lines are very thin

(1 1000 A) and because the depth of focus of our lens is rather large

due to the small opening angle. The most prominent features in the

image are the structures seen with black outlines. These regions are

believed to consist of a thin layer of frozen air which selectively

condenses onto the aluminum grating lines. The grating lines can be seen

with greater contrast in Figure 2(b). The increased contrast is the

result of operating the microscope in a highly nonlinear regime. The

-4-

i . .. .. .. ... .. .. .. ..... ... .... ... .. .. . .....IA



-H 4 m

$. O

-T4

(b)

a 4 ~m(b)

FIG. 2. Images taken in liquid at approximately O.05*K. The object
is a 4 um period grating consisting of aluminum lines on
glass.
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details of this contrast enhancing effect are not yet understood.

In future experiments we plan to further improve the mechanical

components of our apparatus, such as the focusing mechanism, and to

increase our frequency of operation to 2.5 GHz (A = 950 A). The acoustic

lens for this higher frequency has been fabricated, though it has not yet

been tested in liquid helium.

C. THEORY OF NONLINEAR RESOLUTION IMPROVEMENT

In the previous status report1 we described the discovery of a non-

linear acoustic effect which increases the resolving power of the reflec-

tion acoustic microscope beyond the linear diffraction limit. This effect

is observed when the acoustic intensity in the liquid is sufficiently high

for significant harmonic generation to take place. Depletion of the

fundamental frequency by 90% or more is commonly achieved in our experiments.

Although the generated harmonics are believed to play an essential role in

the observed resolution improvement, only the fundamental frequency is

transmitted and received by the microscope.

The resolution improvement which accompanies high intensity imaging is

demonstrated in Figure 3. The object shown is an etched glass grating with

2000 A spatial period. The images were taken in liquid argon at 2.0 GHz

with an acoustic wavelength of 4300 A. Figure 3(a) is the image which is

seen when the microscope is operated in the linear (low power) regime; the

grating is not visible since its spatial period is smaller than can be

theoretically detected. When the rf input power is increased by 14 dB,

the image in Figure 3(b) results. The grating is now clearly visible,

indicating increased imaging resolution. The grating defects are also seen

-6-



(a)

FIG. 3. IR-'jes f g2000 Aperiod rkt'ng taken in liquid argon at 2.0 GHz
(A 4300 A). image (a) is taken at low power (linear regime),
while image (b) is taken at higher power (nonlinear regime).
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with greater sharpness, a further indication that the point response of the

microscope has been improved by operating in the nonlinear regime.

The details of our experimental findings were presented in the previous

report. In this report we provide the theoretical basis for understanding

the origin of the nonlinear resolution improvement. We will also quanti-

tatively account for the experimentally observed nonlinear excess dttenua-

tion of the fundamental and explain why nonlinear effects are relatively

more important in cryogenic liquids than in water. After a brief review

of nonlinear acoustics, we consider the case of second harmonic generation

in a gaussian focused beam. In this model we ignore depletion of the funda-

mental and generation of harmonics higher than the second. Despite these

deficiencies, the behavior of nonlinear focused beams is elucidated. The

second case we consider is the propagation of finite amplitude converging

spherical waves. A numerical solution of the problem is obtained which

takes into account the depletion of the fundamental and generation of

harmonics higher than the second.

C.1 Nonlinear Acoustics - Background

It is found both experimentally and theoretically that pressure peaks

of finite amplitude waves propagate faster than the pressure troughs. This

causes a wave which is initially sinusoidal to distort as it propagates.

Such a wave will approach the shape of a sawtooth wave in the limit of high

amplitude or, if there is no loss, long propagation distance. The importance

of such nonlinear effects is governed by the size of the particle velocity

relative to the speed of sound (the acoustic Mach number), the nonlinearity

of the equation of state, the distance over which the sound travels and the

acoustic attenuation of the liquid.
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An important length scale in nonlinear acoustics is the discontinuity

length. This is the distance at which, in the absence of attenuation, the

slope of a portion of the waveform becomes infinite. The discontinuity

length is given by

L [(1 + B/2A) 01 (-C Oroaf

where w = 21Tf is the angular frequency, v is the peak particle
velocity, k = w/C , M = v o/C is the acoustic Mach number and

a = (1 + B/2A) . The quantity B/A is determined by the nonlinearity of

the equation of state of the liquid. For water at 60°C, B/A = 5.7 4

For liquid nitrogen at its normal boiling point, B/A = 6.6.4

To convert from acoustic intensity to an acoustic Mach number, the

following relation is useful

2 v2 (2)

where I is the acoustic intensity (power per unit area) and Z p 0C 0 is

the acoustic impedance. We may then write

M = v0/Co  (21/Z)1/2/C0

(2 1)/2

0

Thus we see that high acoustic Mach numbers are more easily generated in

media with low acoustic velocity and low acoustic impedance. This is an

important point since cryogenic liquids have these properties.

9-
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Table 1 gives the Mach number and discontinuity length for liquid

nitrogen and water at several different acoustic power levels. At

000 W/cm 2 in water the Mach number is 0.002. For the same power level,

liquid nitrogen has the value M = 0.006 . This value is higher than in water

because of the lower acoustic impedance and propagation velocity of nitrogen.

Attenuation has the effect of counteracting the formation of shock waves

in the liquid. The nonlinear distortion of the wave is equivalent to the

generation of higher harmonics. Since attenuation in most liquids increases

as 2 , the higher harmonics will be attenuated more rapidly than the

fundamental. This tends to restore the waveform to its original sinusoidal

- form. Nonlinear effects in lossy liquids become important when the

discontinuity length is smaller than the attenuation length. This is

parameterized by r , the Gol 'berg number

r = 1/aL.

Nonlinear effects are important for r > 1 . Some representative values of

the Gol'berq number are given in Table 1.

It is found experimentally that the fundamental frequency component of a

high amplitude wave suffers greater attenuation than does a low amplitude

wave. Blackstock 5 has examined in detail the phenomenon of nonlinear excess

attenuation of the fundamental for plane waves. The nonlinear attenuation is

due to the depletion of energy in the fundamental by the generation of

harmonics. For propagation of plane waves over distances much greater than

L , the excess attenuation is determined solely by r . In particular,

Blackstock showed that for long propagation paths the excess attenuation is

approximately given by

- 10 -



TABLE 1

*1i Nonlinear Plane Wave Propagation in Water and Liquid Nitrogen

H20 (600C)

B/A = 5.7 f = 2.6 GHz

A = 0.60 1m i/a 13 uw

2 Excess .
I(W/cm ) M L r Attenuation

100 0.0007 34 urm 0.38 0 dB

4 1000 0.0023 11 ur 1.2 0.3 dB

10,000 0.0073 3.4 um 3.8 3 dB

100,000 0.023 1.1 um 12 10 dB

LIQUID NITROGEN

B/A =6.6 f = 2.6 GHz

X = 0.33 um 1/a = 11 um

2 Excess *

t(W/cm2 ) M L r Attenuation

10 0.0006 19 um 0.5 0 dB

100 0.0020 6,1 11m 1.8 0.9 dB

1000 0.0064 1.9 um 5.8 5 dB

10,000 0.020 0.61um 18 14 dB

100,000 0.064 0. 19lim 58 23 dB

Calculated for propagation over path much longer than L

- 11 -
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l [gO r (r/2)l
EXDB =-20 log10 [rt0 (i'2)]

where EXDB is the nonlinear excess attenuation in decibels. The functions

10 and 1  are Bessel functions of imaginary argument. For

r = 1 , the excess attenuation is 0.27 dB. For r = 10 , it is 8.9 dB.

One conclusion to be drawn from plane wave analysis is that lower

.4k intensity is required in liquid nitrogen than in water for nonlinear effects

to be important. For example, at 2.6 GHz the power required for

r = I is 910 W/cm 2 in water and 31 W/cm 2 in liquid nitrogen.

While nonlinear propagation of plane waves is well understood, the

propagation of focused beams has not been as thoroughly investigated. The

principle work on this subject has been done by Beyer,4 Muir,6

Naugol'nykh et. al., 7 Bakhvalov et al., 8 and Sutin,9 among others. In

addition to these acoustic studies, work done on nonlinear generation in

focused optical beams is relevant. The work by Kleinman, Ashkin, and Boyd 10

on second harmonic generation in gaussian optical beams is found to be

particularly useful.

To understand the properties of focused beams, a mathematical basis for

solving nonlinear wave propagation problems is needed. The equations of

nonlinear acoustics have been derived by various investigators. 11,7,12 A

recent work by Tjotta and Tj~tta11 derives the nonlinear wave equation from

the Navier-Stokes hydrodynamic equations and makes logical connection with

equations derived by others. The relationship of equations by Westervelt, 12

Blackstock, 5 Kuznetsov, 13 and Zabolotskaya and Khokhlov 14 is discussed in

Reference 11. The analysis in the remainder of this report is based on the

-12-
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equation

(v21 1 )~ D o3

00 0

(3)

2 
22

" __c _t_ ( - .0)

0

where, as before, a (I + B/2A) .This equation was derived by

Tjotta and Tjotta and is similar to that used by Westervelt.12 The first term

on the right side of (3) is the attenuation term. The quantity 0 is given

by

0 (7 + +r =

where n is the shear viscosity, € is the bulk viscosity, i is the

thermal conductivity, Cv is specific heat at constant volume and Cp is

specific heat at constant pressure. The second term on the right side of (3)

is the nonlinear term and leads to nonlinear distortion of the waveform and

harmonic generation.

In order to find a solution to (3) we must specify the boundary condition

p(x,y,zt)
x,y,z on
surface S

For the acoustic microscope the surface S of the boundary condition is the

spherical lens-liquid interface. The amplitude and phase of the acoustic

13 -



source at this surface is determined by the pupil function of the lens.

C.2 Second Harmonic Generation in Focused Gaussian Acoustic Beams

We consider here second harmonic generation (SHG) in a focused beam under

the assumptions of no depletion of the fundamental beam and no generation of

harmonics higher than the second. The amplitude profile of the fundamental

beam is assumed to be gaussian. The gaussian beam is a good approximation of

the true beam shape in the focal region and has the advantage that an

analytical expression for beam propagation is easily written.

We start with Eq. (3) and decompose the density variation into a

fundamental wave (frequency wi) and a second harmonic wave

(frequency w2 = 2wI)

(x'Yz)e + (x,y,z)e (4)

where p(1)(x,y,z) and p(2)(x,y,z) are complex-valued functions describing

the amplitude and phase of the two waves.

If we substitute (4) into (3) and equate terms of like frequency, we get

two equations

(V2 + k )P ( 1 )  -21 -- ap(1) (5)

C 0

(V2 k2)p 
( 2 )  -21 w2 a2(2)

C 2

+ p (6)
p0 0

where k, w1/Co and k2  2k, 2/Co .

- 14 -



The first equation is just the lossy wave equation for the fundamental

wave. There is no nonlinear term in this equation since we have assumed that

the fundamental is undepleted and therefore unaffected by the nonlinear

processes. The secceded equation is the lossy wave equation for the second

harmonic with a nonlinear source term which accounts for generation of the

second harmonic.

For notational convenience we rewrite Eq. (6) as

2 + 2 (2) = + Y(1) (7)
( k2 ) -k 2a2  YP

- where
2B

20w
. Po C2

0

In the absence of loss (ca = 0) , Eq. (7) can be solved using a Green's

function:

0(2)(x,y,z) = y f f G(l,') (8)

z0 - -

6. 2
(r(1)( ,) dx'dy'dz'

where zo  is the coordinate specifying where the wave enters the nonlinear

medium and is assumed to be fixed. The Green's function is given by

ik2R
1le

G(r, ' = , (9)
4w R

where

R r+ -- r+I

15-
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The vectors r and r' are given in terms of unit vectors as

r = xx + yy + zz

and

Sxx + y, + z'z

A Green's function solution essentially identical to the one above was used by

Ingenito and Williams15 in their analysis of SHG for a plane piston

radiator. In an analysis of parametric acoustic interaction, Westervelt 12

A I used a similar integral expression.

To analyze gaussian focused beams it will prove useful to modify the

Green's function by the paraxial approximation. The new Green's function

takes the form

G(r,P) = 1 exp ik Z + ik2(X
2 + 2 / 2Z (10)

where

X = x-X'

Y = y-y'

Z = Z-Z' 0

It was assumed that X2 + y2 << Z2  so that we could write

R Z + (X2 + Y2 )/2Z

-16-



in the exponential.

If loss is included, the paraxial Green's function is modified further:Gir.,) +(. .(1

4 Gr exp cL2Z + ik2Z ik2(X
2 + Y2 )/2Z)

This Green's function is essentially the same as the one used by Kleinman,

Ashkin, and Boyd10 in their analysis of optical SHG.

To analyze harmonic generation In focused beams we start with a gaussian

fundamental beam

1 e ik1z j 2 +y

0(xyz) 2 p10  e exp - , (12)
1 + i [ w0(i + i)

where = 2(z - f)/b is a dimensionless quantity parameterizing propagation

distance and b= w2k is the confocal length. The function in (12)

describes a focused acoustic beam whose cross-section at all z positions has

a gaussian amplitude distribution. It is well known that such a function is a

paraxial solution to the wave equation.1 0 ,16 The width of the beam, defined

as the radial distance at which the amplitude of the beam falls to 1/e of

its on-axis value, takes on the minimum value wo  at the focus (z a f)

From (12) the intensity of the beam (power per unit cross-sectional area)

is given by

3

I(I)(x,y,z) - j(1) (x.y,z)12
2%)

C3 2PlO 2 e2a ( 2(x2 + y2)

-2PO ex + ;( (i + '2

(13)

- 17 -



and the total power in the beam is

P(z) I(1)(x,y,z) dx dy

- C 10 1 2 eI (14)

2\2°

One important physical feature of the gaussian beam solution is the phase

shift which occurs upon passage through the focal region. The phase of the

focused beam relative to a plane wave changes along the propagation path due

U to the factor 1/(1 + it) in (12). From this factor it can be seen that the

phase of the field at the focus ( 0 = ) is shifted by w/2 relative to the

phase of the converging wave ( << 0) . The diverging wave (E >> 0) is

out of phase with the converging wave.

To find the second harmonic beam, we square the fundamental field (12)

and use the integral solution (8) with the Green's function in (11).

Following the procedure of Kleinman, Ashkin and Boyd, 10 we get

(2) 2 z ' exp(-2cLlz' + i2klz)P ()xY'Z) =PO (y/4w)ZI+i )

10 -f )

(15)

[ (x 2 + Y2 2
xp 2x e x(ctz) -7 2.-) Zdx'dy'dz'

Iw(1 +it') (O2 (

where ' 2(z' - f)/b and k2 - 2k,

- 18 -



The x' integral in (15) can be written as

-2x' 2 ik 2 X2

Ix, exp + dx' (16)

Expanding X2  in the exponential.,

lxi ex[ ik2x2]
I x& exp L2Z

ik xx' k 2 2  12x2 x
Z 2Z w 0 (1 + i)

The coefficient of x'2  in the parentheses can be written as

q k1(1 + i&)

Z(1 + i ')

Letting the coefficient of x' in the integral be written as

k x
p 

2
I

z

we now make use of the relation1 0

exp(-ipx - lqx 2 )dx = ('112 exp(ip 2/4q)

This relation is true if Im(q) < 0 , a condition which holds here since

' < . We get for (16)

(ilvzc + 1&) 1/2 2
X1kl(l + Mie) W2(l + i1 )

- 19-
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A similar procedure is followed for evaluation of the y' integral in (15).

Using the above results, the solution for the second harmonic wave (15)

becomes

exp+ lZ e [ w2(x +y)

P(2)(x,y ,z) = p20(z) ez) exp 2(x + i2

1 + w 0

(17)

where

y -: z exp[- (2a, - 2)z ]

p20 (z) tipo • .-0  dz

(18)

From (17) we see that the second harmonic beam has the amplitude cross section

and phase curvature of a gaussian focused beam. The amplitude and phase of

the beam is modified from that of a freely propagationg gaussian beam,

however, due to the multiplying function p20 (z)

From Eq. (17) we also deduce the important result that the width of the

beam at the focus is w0/r . This is a factor of v/ smaller than the width

of the fundamental beam and is consistent with the experimental finding that

resolution improves by a factor of at least 1.4 when imaging is done at high

power.

By analogy to Eqs. (13) and (14), the intensity of the second harmonic

beam is

21 1 4(x2 + 2
!~~2~(x~yzI +g0 f C2 W2(1 + ~)J(9

- 20 -
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and the total power in the beam at a given z plane is

= C oP20(z)  (20)

C.2.1 Power content of second harmonic beam -- lossless case

From Eq. (20) we see that the power in the second harmonic beam is

2
proportional to the quantity Ip20 (z)j

2
. In the case of no loss,

P20 (z) is given by

2 'Y

P20 (z) = 1  - S(z) (21)

where 4k 1

z dz'

S(z) = 1+
f 1 + W{

z 0

Writing this integral as the sum of real and imaginary parts, we get

S(z) = SR(Z) + i SI(z)

where

z 1
SR(Z) = 1 + V, dz' (22)

and

z el

S(z) - dz' . (23)
f 1+
zo

These integrals are easily interrated to give

- 21 -
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S (tan-IE - tan-1 ) (24)

and

lo 1 + E2)(5

SI= ".iot(lg I+-- )( , 25)

0

where

o = 2(z0 - f)/b . (26)

From (5.26) and (5.27), the power in the second harmonic beam is

P(2)(z) C CS 2  c2+ S2)

where

C3  2Co W2 Y  PO4

o 77-- 10101128 p0  k

If the definition of y in (7) is used,

C C0  2 2 2 4

C -7 B w1 w o .PO (27)
32 p 0

We now consider an example pertinent to acoustic microscopy and assume

the following parameters:

f = 0 am

zo  = -18 Um

-18 4 z 4 18 uM

- 22 -



wo  Z 0.55x

X = 0.326 um

These parameters represent the case of an 18 um radius acoustic lens operating

at 2.6 GHz in liquid nitrogen. The corresponding values for

and &o are

-57.9

&0 4 57.9

Plots of S2 (dashed line) ,S (dotted line) and IS12 = 2 + S2 (solid

line) are shown in Fig. 4. The plots were computed using (24) and (25). We
see that S2  grows in the region t < 0 , peaks at the focus

R

= ) and diminishes in the diverging region of the beam ( > 0) . The

2function S, grows most rapidly near the focus and then remains constant in

the diverging beam. The combination of the two contributions,

2+ , represents the total second harmonic power in the beam. It starts

with zero value initially ( -57.9) and builds up to a peak just past the

focus at { 0.6 . As the beam diverges (& > 0) , the total power in the

second harmonic beam decays to a finite value.

We now consider the feeding of power from the fundamental beam to the

second harmonic and vice versa. The change in power content of the

fundamental wave as it propagates is not directly calculated since we are

using a model which ignores depletion (and growth) of the fundamental. If the

propagation is lossless, however, we can infer the transfer of power out of

and back into the fundamental by observinq the growth and decay of the second
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harmonic. By conservation of enerqy or, equivalently, by the Manley-Rowe

relations of parametric processes, we know that the sum of the power in the

two beams is constant. On the converging side of the focus ( < 0) , the

harmonic content of the beam steadily rises as the beam propagates toward the

focus (see the solid line in Fig. 4). In this region, power is fed from the

fundamental wave into the second harmonic beam. After peaking at E - 0.6

the second harmonic power decreases 49% when propagating from = 0 to

= 57.9 . This means that 49% of the power in the second harmonic beam at

the focus is converted back into power at the fundamental frequency. This

down conversion is responsible for the communication of high resolution

information to the fundamental frequency.

C.2.2 Power content of second harmonic beam -- lossy case

In the previous section we examined second harmonic generation for a

gaussian fundamental propagating in a lossless medium. In this section we

examine the same case but include the effects of loss. As in the previous

2
case, the power in the second harmonic beam is determined by !p2 0 (z)I

Following the same procedure as in the preceding section, we get

p(2)(z) _ Cs = C(S2 + 2

where

SR - Re(S) ,

sI = Im(S) ,

and the quantity S is defined as

- 25 -

.. ... . .. ... .. ... ... .. ... .. -... . - l --i (



T r ~~~ --....---" --

S)2z Z exp -[(2aI - a2)z'ds(z) e fdz' , (28)
1 + i '

where a1 and a2  are amplitude attenuation constants for the fundamental

and second harmonic, respectively. This definition of S(z) reduces to the

one in (21) if al = (2 = 0 . The integral in (28) may be integrated

numerically.

To illustrate the behavior of second harmonic power P(2 )(z) , we

consider the same parameters as used in Section C.2.1. In addition, we oust

specify the loss parameters. We choose attenuation numbers appropriate for

liquid nitrogen at 2.6 GHz:

a/f2  = 13.8 x 015 sec 2/m

L1 = 9.3 x 104m "1

a2 = 3.7 x 10 5m-1

Figure 5 shows plots of S (dashed line), S (dotted line) and

ISl2 SR + S, (solid line). We see that the harmonic power (as measured by

jS1 2 ) grows rapidly in the vicinity of the transmitting lens and reaches a

broad local maximum at z m-14 um . The harmonic power then decreases

somewhat before rising to a sharp second peak near the focus (z - 0) . After

the focus the harmonic power rapidly diminishes due to the strong absorption.

The lossy case differs from the lossless case in several important

respects. In the lossless case, the focal region iS the principle site of

nonlinear generation. In the lossy case, although the focus is still

important, we find that the region near the lens in the neighborhood of

- 26 -
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z = -15 vm is also a site of significant nonlinear interaction. The dominance

of the focus has been reduced by the attenuation in the liquid of the

fundamental beam. Another significant difference between the lossy and

lossless cases lies in the relative importance of S and SI . In the

lossless case,* S2 is the dominant contribution to total harmonic power in

the converging beam, while S2 is the dominant contribution in the divergingR

beam. In the lossy case, we see from Fig. 5 that S, dominates in both the

converging beam and in the diverging beam for z > 10 um . S2 dominates only

in the region 0 < z < 7 pm . In this region we note that S, goes through a

sharp null. We mention these features because of their similarity with the

solutions obtained using an analysis of spherical wave propagation.

C.3. Nonlinear Spherical Wave Analysis

In the previous section the nonlinear properties of the focused acoustic

beam were analyzed by considering second harmonic generation due to an

undepleted gaussian beam at the fundamental frequency. This model was

adequate for determining that the spot size of the second harmonic beam was

smaller than that of the fundamental by a factor of f2 and for demonstrating

that a portion of the power in the second harmonic beam is fed back to the

fundamental upon passage through the focal region.

In this section we consider an alternative model. We consider the

propagation of a finite amplitude spherical wave, taking into account

absorption, depletion of the fundamental and generation of harmonics higher

than the second. The neglected effects in this analysis are diffraction and

nonlinear interaction at the focus. Far from the focal region the omission of

diffraction effects is not a serious problem. However, when the wave

approaches to within one confocal parameter of the focus, diffraction becomes

- 27 -
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important and the true solution deviates from the spherical wave solution.

This deficiency is the same one encountered by Sutin in his analysis of

focused beams in a lossless medium.9 In his analysis, Sutin ignored nonlinear

effects for propagation within one confocal parameter of the focus. A similar

assumption will be made in this section. We assume that propagation from one

side of the focal region to the other occurs without nonlinear interaction;

only linear attenuation of harmonics is taken into account. The focal region
2

is defined as -b 4 r 4 b where b = 2iw / and wo  is the 1/e radius of

the focal spot.

The assumption of no nonlinear interaction in the focal region is a

significant limitation to this theory since it is in this region that the

intensity is highest. However, the assumption is not as bad as it may seem

for two reasons. First, the presence of relatively high attenuation tends to

reduce the intensity at the focus and de-emphasize its importance, as was seen

in Fig. 5. Secondly, harmonic generation is a cumulative effect and the

distance through the focal region is short (typically only a few wavelengths

for the acoustic microscope). We discuss further the effect of ignoring

nonlinear interaction at the focus in Section C.3.5.

C.3.1 Equations for finite amplitude spherical waves

The analysis of nonlinear spherical waves begins with Eq. (3) which we

rewrite here as

2 2 0 a 3P

C0 C0a

2 (29)
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We assume a general solution including all harmonics

1 [ + PI(r)e (k 1 r-aIt) i (k2r-w2 t)
+P2(e

+ P3 (r)e + ...J (30)

+ complex conjugate

.4.

where n= nwl' k n nk1  and the p n(r) are complex valued functions

representing harmonic amplitudes. We now expand the last term. of Eq. (29)

2 1
(P PO Pj Pi

j= i

OS~fl4 * i(k r-awt0
+ e

E +-: Oj Ph j + 2 Pn +jP •)

Ljj.l

+ complex conjugate of previous term

Therefore,

a2  
2 2

-  ( p - °  - PC n  =
P0a O n= 1

I Jn- " i ( k n r ' wn t )o

xf Pjn-j + 2 .Pn+Plj e

lJ-1 J-1

+ c.c. (31)
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Substituting (31) into (29) and equating terms with like propagation factors,

we get the system of equations

( ~ 1 i(knr-wnt)

C; atf

-i 2 n ( Pn(r) e (32)
CO
0

W 2 /n-1 * (kn r-n t)

+ n E PjPn-j + 2 Pn+jp)

PoCo 2 j n- j=1

The Laplacian on the left hand side of (32) can be approximated as

i(k r-w t)
72( O (r~ n n

21k n i(knr-wnt)
O n k Pn + 21k - Pn e (33)

r r

where we have used the slowly varying envelope approximation

apn
k nPn > r

and

aPn

ar ar

-30

- AL



Substitutinq (33) into (32) yields

3P n(r) p n(r)
3 + = -anpn(r) (34)

I r r

E pjP:: + 2 Pn+jPj4aCo 0 j=I j=1

Equation (34) is the basic equation for the propagation of spherical

waves in a nonlinear medium. For computational purposes, however, it is

useful to make a change of variable so that the loss and geometrical focusing

terms in the differential equations are eliminated. Let

p r e'n(r-r0)
1, -n (r) 2  a e Gn(r) (35)

CO r

If this is substituted into (34), a simplified system of equations Is obtained

3G ismn r o  an(r-r°) (

ar 4

FCGiGn-j exp[-(aj + anj)(r - ro)]

+2 GnG * exp[- (=j + .+j)(r - ro)]

j nnj
J-1

Using the relation

n-i 2 n-i

E GjGn- j  - E j Gj Gn- j

J2l n j
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we get

G8A1 ro  0

x(°2C 0  r

n-1

' Gj Gnj expE- (aj + an_j)(r - ro)] (37)

j=1

+ n ' Gn+j G. exp[- (aj +n+j)(r ro)]

This complex set of equations is equivalent to the two real sets of equations

derived by Trivett and Van Buren.17

C.3.2 Calculation of harmonic amplitudes in liquid nitrogen

If the harmonic amplitudes Gn(r) are specified at the boundary

r = ro , a finite subset of the infinite set of equations in (37) can be

numerically solved to find the harmonic amplitudes at the other values

of r . Equation (35) is used to convert from pn (r) to Gn(r) and vice

versa. A computer program using a quartic Runge-Kutta technique was written

to numerically integrate (37).

Trivett and Van Buren 17 discuss the numerical solution of equations

similar to those in (37). They note that the principle problem in using a

truncated set of equations is the build up of amplitude in the highest

included harmonic. In the examples presented below, seven harmonics are

included in the calculations. The strong acoustic attenuation of the seventh

harmonic prevents excessive amplitude from accumulating in this harmonic due

- 32 -

A L

o--a - -



to the truncation. The integration step-size was chosen to be 0.05 times the

discontinuity length as calculated by (1). This was found to give better than

1% accuracy for the harmonic amplitudes, a finding consistent with the results

of Reference 17.

The diagram in Fig. 6 is useful for understanding the calculations. An

initial intensity is specified at the lens surface, designated by radius

ro . The corresponding value for Gl(ro) is found using (2) and (37). The
-4

initial amplitude of Gn(ro) for n > 1 is zero. Equations (37) are step-

wise integrated to find the growth (or decay) of the harmonics. The

integration stops when r = r, . This is the boundary of the focal region,

determined by the confocal lenqth b . The amplitudes pn(ri) are then

propagated across the focal region according to

Pn(r 2) - Pn(rj) exp[- tn(r2 - rj)] (38)

where r2  is the radius of the other side of the focal region. Equation (38)

takes into account linear absorption and a change in sign due to the i phase

shift at the focus. The propaqation from r2  back to the lens at r3  is

carried out by further integration of (37).

The following numerical values are used in the calculation

r0  -18 m

r = -b

r 2  -b

r3  -18 m

b 2w w2 /A 0.622 Pm
0

wo = 0.55 x

- 33 -
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FOCAL
REGION

2b -

TRANSMITTING RECEIVING

LENS LENS

FOCAL
PLANE

FIG, 6. Geometry for nonlinear spherical wave analysis. Wave is launched

from transmitting lens at radius r0 and propagates according

to nonlinear spherical wave equations until radius r1. In the

focal region (radius r1 to r2 ), nonlinear interaction is ignored

and the wave propagates taking into account linear attenuation

of harmonics and a iT phase shift. From radius r2 to the

receivinq lens at r3, the wave propagates according to nonlinear

wave equations.
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= 0.327 Pm

= n2 x 9.3 x 10
4m 1

B/A 6.6

It should be mentioned here that the size of the lens opening angle affects

the calculations only indirectly by determining the value of wo and,

thereby, the confocal length, b . The value of wo  indicated above

4corresponds to an opening half angle of 53°.

Figure 7 shows the results of calculations for the case of an

18 wn radius lens operating in liquid nitrogen at 2.6 GHz. The intensity of

the fundamental wave at the transmitting lens surface (r = -18 um) was chosen

to be 100 W/cm2 . The plot in Fig. 7(a) shows how the intensities of the first

four harmonics vary along the propagation path. The dashed line shows the

intensity that the fundamental wave would have as a function of radius if the

propagation were linear. It is seen that at this intensity level the strength

of the fundamental wave follows the linear result closely. It is observed

that the intensity of the fundamental is almost constant for

-18 um < r < -5 um . In this region the intensifying effect of geometrical

focusing is approximately balanced by acoustic absorption. For

-5 uIm < r < 0 , the effect of focusing is larger than attenuation and thus the

intensity rises to a peak to the focus. The deviation of the fundamental wave

intensity from that of the linear case is due to depletion of the fundamental

by harmonic generation. At the exit from the liquid (r = 18 um), the excess

attenuation of the fundamental due to this effect s seen to be 3.5 dB.

The plot in Fig. 7(b) is similar to Fig. 7(a) except that oower in the

beam is displayed rather than intensity. Thus the linear case, depicted by

the dashed line, shows a steady exponential decline of beam power as a
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FIG 7. Prooagation of sonerical waves in nitrogen for initial
intensity of 10C U/crn, . Plot (a) shows intensity of

harmonics uc tc the 4th and Wb shows the Dower in the beam.
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function of radius due to absorption instead of the peaked response shown in

the previous plot. One feature of interest in Fig. 7(b) is the build up of

second harmonic power in the vicinity of the transmitting lens. This result

is similar to the gaussian beam result in Fig. 5. Another interesting feature

of Fig. 7(b) is the behavior of the second harmonic in the diverging region of

the beam (r > 0) . It is seen that after reaching a maximum in the focal

region, the second harmonic power declines rapidly and goes through zero at

r M 2 um . This is due to the feeding of energy from the second harmonic back

to the fundamental and is similar to the behavior observed in the S2

contribution in gaussian beams (see Fig. 5). After going through zero, power

again builds up in the second harmonic but with reversed phase. It should be

noted that the zero which occurs in the second harmonic power is an artifact

of ignoring nonlinear interaction in the focal region. This is discussed

further in Section C.3.5 where the spherical wave and gaussian beam results

are compared in more detail.

The plots in Fig. 8 and Fig. 9 are similar to those in Fig. 7 except that

different initial intensities are assumed. In Fig. 8 the initial intensity is

1000 W/cm 2 while in Fig. 9 the assumed intensity is 10,000 W/cm 2. It is seen

that as the initial intensity is increased, the build up of harmonics near the

transmitting lens takes place more rapidly. Also, it is evident that the

higher transmitt,_d intensity results in greater excess attenuation of the

fundamental, as expected. For the case of 1000 W/cm 2, the excess attenuation

at r = 18 um is 11.4 dB. For 10,000 W/cm 2, the excess attenuation is

21.1 dB. It is interesting to note that much of the total excess attenuation

is accumulated in front of the focal region. For example, the excess

attenuation at r = -10 um for an initial intensity of 10,000 W/cm 2 is

13 dB. Because much of the excess attenuation occurs in the converging beam,
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FIG. 8. Propagation of spherical waves in nitrogen for initial intensity
of 1000 W/cm . Plot (a) shows intensity of harmonics up to the

4th and (b shows the distribution of power in the beam among the

harmonics.
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FI G. 9. Propagation of, spherical waves in nitrogen for initial intensity
of 10.000 W/cu'i Plot (a) shows intensity of harmonics up to the

4th and (b) snows the distribution of power in the beam among the

harmonics.
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the intensity of the fundamental in the focal region changes by only 0.4 dB

when the initial intensity is increased from 1000 W/cm 2 to 10,000 W/cm 2. The

intensities of the higher harmonics in the focal region show a similar

independence of initial intensity.

C.3.3 Calculation of harmonic amplitudes in water

The procedure used to compute harmonic amplitudes in liquid nitrogen can

be applied to the case of propagation in 600C water at 2.6 GHz. As before,

an 18 um lens radius is assumed. The parameters which change in the

calculation include:

b = 2sw2/\ = 1.1 um

w0  = .55 X

= .577 um

Bn = n2 x 7.4 x 10
4 m 1

B/A = 5.7

Figure 10 shows calculated harmonic power in water for an assumed initial

intensity of 1000 W/cm2 . The excess attenuation of the fundamental at the

exit from the liquid (r = 18 um) is observed to be small, approximately 1.5

dB. This is substantially less excess attenuation than seen in the liquid

nitrogen case for the same initial acoustic intensity. This is expected based

on the plane wave analysis summarized in Table 1.

Figure 11 shows calculated harmonic power in water for an initial

intensity of 10,000 W/cm 2 . The excess attenuation of the fundamental at

r = 18 pm is found to be 7.6 dB.
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FI G. 10. Propagation of spherical waves in water for initial intensity of 1000 W/cU2

The plot shows the distribution of power among the harmonics.
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FI G. 11 . Propagation of spherical waves in water for initial intensity of 10.000 WN m

The plot shows the distribution of power among the harmonics.
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C.3.4 Comparison of experimental and calculated values of excess

attenuation

Using the nonlinear spherical wave analysis of the preceding sections,

the excess attenuation of the fundamental can be calculated as a function of

initial intensity and compared with experiment. Figure 12 shows plots of

calculated and experimental results. The solid lines represent experimentally

measured excess attenuation in nitrogen and 600 C water at 2.6 GHz as a

4 function of RF input power. The solid dots in Fig. 12 are the calculated

values of excess attenuation for a variety of initial intensities. It is

found that if 1 milliwatt RF input power is assumed to be equivalent to

10 W/cm2 at the lens surface, then a good fit between experimental and

calculated points is obtained. The fact that both water and nitrogen curves

are fit with the single adjustable parameter indicates that tne basic features

of nonlinear excess attenuation are accounted for in our calculations.

The correspondence between 1 mW RF input power and an acoustic intensity

of 10 W/cm2 is reasonable. To show this we perform a simple calculation. The

surface area of an 18 um radius lens with 530 opening half-angle is

approximately 8.1 x 0 6cm2. Thus an average intensity of 10 W/cm2

corresponds to a total power of 0.08 milliwatts at the lens surface. This

level of acoustic power is 11 dB smaller than the assumed lens rf input power

of 1 mW. The loss of 11 dB from RF to acoustic power is a reasonable value

and can be acounted for by assuming a one-way transducer conversion loss of

5 dB, a lens illumination loss of 5 dB and an acoustic impedance matching loss

of 1 dB. Despite this good agreement between calculated and measured

nonlinear excess attenuation, it should be noted that the calculated

attenuation must necessarily underestimate the actual value since we have

ignored the depletion which takes place in the focal region.
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C.3.5 Connection between nonlinear spherical wave analysis and

gaussian beam analysis

The most serious deficiency in the nonlinear spherical wave analysis is

the neglect of nonlinear interaction in the region within one confocal length

of the focus. In order to judge the significance of this approximation we

compare the results of the spherical wave analysis with the results of the

gaussian beam analysis of Section C.2. In order to make the comparison

between the two methods we consider the case of very low initial acoustic

intensity. In this limit the assumptions of negligible depletion of the

fundamental and no significant generation of harmonics higher than the second

are valid.

The plot in Fig. 13(a) shows the growth and decay of the second harmonic

as computed by the spherical wave method. The assumed initial intensity in

liquid nitrogen at 2.6 GHz was 1 W/cm 2 . This intensity level results in

depletion of the fundamental by only 0.06 dB. The normalization of the curve

is arbitrary. Figure 13(b) shows a comparison of the spherical wave method

with gaussian beam analysis. The line of triangles is the spherical wave

result and was copied from the plot in Fig. 13(a). The solid and dotted lines

are the results of gaussian beam analysis and are the same as the lines shown

2 2 2in Fig. 5. The solid line is the total harmonic power, IS 2 - SR + SI . The

dotted line is the component SI . It can be seen that agreement between the

solid line and the spherical wave analysis (line of triangles) is good in the

regions -18 um < r < -2 um and r > 12 um . Even more striking is the close

agreement over the full range of r between the spherical wave analysis and

the S2 component of the gaussian analysis (dotted line).

The reason for the close agreement between the spherical wave analysis

and S2 can be understood as follows. S, is the imaginary component of the

I
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FIG. 13. Comparison of sphlerical wave and gausstan beam analyses. Plot (a) Shows!

second harmonic power as calculated by the spherical wave method for a

low initial intensity (I U/cm-). Plot (b) show comparison of the spherical

wave result from 4a) (t riangles) with the gaussian Deem result from
Fig. 5 sold and dotted lnes). The solidline is S 2 which s pro-

portional to second harmonic beam Power. The dotted line is St.

-45-

U''. .. . . ..6
bI
A.I



second harmonic wave as determined by gaussian beam analysis. As was seen in

Section C.2, harmonic generation in the region far from the focus is in phase

with the imaginary component. As the focal region is approached, however, the

phase of the generation remains fairly constant until approximately one

confocal length away from the focus. At this point, the phase changes more

rapidly until at the focus the second harmonic generation is purely real. In

other words, the second harmonic waves generated at the focus are 900 out of

4phase with waves arriving at the focus that were generated far "upstream". In

the spherical wave analysis the gradually changing phase of the harmonic

generation is ignored. Instead it is assumed that all generation occurring

outside of one confocal length of the focus is in phase with waves generated

" upstream" and all generation within one confocal length of the focus can be

ignored. Thus the spherical wave analysis predominantly includes a component

analogous to S, and excludes the component analogous to SR

C.3.6 Contrast in the Nonlinear Focused Imaging System

The most interesting feature of imaging with high intensity focused

acoustic waves is not that the generated higher harmonics focus to smaller

spot sizes than the fundamental beam. This is a well understood and expected

result. What is more surprising is the fact hat the high resolution

information contained by the higher harmonics is impressed onto the

fundamental frequency, apparently with good efficiency. To explain this

phenomenon we consider an idealized object consisting of two types of

reflecting regions. One region is chosen to be perfectly reflecting; it

reflects both the fundamental and higher harmonics with 100% efficiency and

zero phase shift. The second region consists of a hypothetical material which

perfectly reflects the fundamental wave and totally absorbs the higher
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harmonics. If such an object were imaged at low power (linearly) by the

acoustic microscope, we would expect to observe no contrast between the two

regions. What we would like to know is how mch contrast is observed if the

object is imaged at high power.

To answer this question we use the nonlinear spherical wave analysis

developed in this section. Consider the propagation of a focused beam with an

initial intensity of 1000 W/cm 2 in liquid nitrogen at 2.6 GHz. The growth and

decay of harmonics in such a beam was previously examined in Fig. 8 for the

perfectly reflecting object. Figure 14 shows the results of the case where

only the fundamental wave is reflected. The harmonic strengths in the

converging beam are identical in Figs. 8 and 14. In the focal region of

*Fig. 14 we set the strength of all harmonics other than the fundamental to

zero. We then calculate the behavior of the fundamental and higher harmonics

in the diverging beam.

The contrast between the two types of reflecting regions is determined by

the difference in strength of fundamental waves at the exit from the

liquid (r = 18 mrn). To more easily compare the behavior of the fundamental

waves we plot on a single graph in Fig. 15 the power in the fundamental for

the two cases, as given by Figs. 8 and 14. We see that a significant

difference in fundamental power appears in the diverging beam within several

microns of the focal region. At the exit from the liquid the difference is

0.9 dB. Thus we have shown that imaging an object which has contrast for the

higher harmonics also exhibits significant contrast at the fundamental

frequency.

Although the above example is hypothetical, it is in some ways similar to

real examples. Consider, for instance, a periodic grating of spatial

frequency slightly higher than the cut-off frequency of linear imaging.
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Suppose the grating consists of perfectly reflecting and perfectly absorbing

regions. For linear imaging, the strength of the received fundamental wave

will be independent of where on the grating the focused beam is centered. The

second and higher harmonics, however, will be a strong function of position of

the beam on the grating since the spatial frequency of the grating lies within

the spatial frequency response of the higher harmonics. Because the

modulation of the higher harmonics affects the strength of the fundamental due

to the nonlinear interaction, we expect that the grating can be detected at

the fundamental frequency.

The experimentally observed contrast in nonlinearly resolved objects is

found to be considerably greater than the 0.9 dB predicted by Fig. 15. For

example, the contrast observed for the grating in Fig. 3 is approximately

3 dB. To explain the greater contrast it is probably necessary to take Into

account the nonlinear interaction in the focal region as well as the effect

that such a complicated object has on the shape of the reflected wave fronts.

C.4. Summary of Nonlinear Imaging Results

We have seen that nonlinear interactions in the coupling liquid of the

acoustic microscope are of great importance. One consequence of the nonlinear

interaction is the improvement of imaging resolution which occurs when the

microscope operates at high input power levels. The highest resolving power

yet achieved in the acoustic microscope was achieved using the nonlinear

resolution improvement discussed in this chapter. A grating with

2000 A period was successfully imaged in liquid argon at 2.0 GHz. Even

smaller gratings, perhaps as small as 1500 A, could have been resolved at

2.8 GHz in nitrogen or argon had the gratings been available. A 3100 A period

grating was successfully resolved in hot water at 2.6 GHz. It Is interesting
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to note that this resolution is probably higher than the highest resolution

yet achieved in water using conventional linear imaging.

An analysis of finite amplitude gaussian beams showed that the second

harmonic spot size should be a factor of Vf smaller than the fundamental

spot size. This is consistent with the experimental findings which set the

lower bound of resolution improvement at a factor of 1.4. The gaussian beam

analysis also indicated that a portion of the acoustic energy in the second

Aharmonic is transferred into the fundamental beam after passaqe through the

focal region. This result was corroborated by spherical wave calculations

which showed that significant contrast will appear at the fundamental

frequency for an object which modulates the intensity of the higher

harmonics. In addition, the spherical wave calculations provided the basis

for a detailed understanding of experimentally measured nonlinear excess

attenuation.
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